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Abstract. In the theory of thin fluid sheets, governing equations are derived with specific reference to an assumed
simple kinematic structure of the flow. There is a separate set of governing equations associated with each degree
of complexity of the kinematic structure, forming a hierarchy of models (Green and Naghdi [3] and Shields and
Webster [8]). If one is interested in the velocity profile across the sheet, the kinematic structure can be used again
to interpret the variables in the governing equations as an approximate flow. This paper is concerned with the
properties of this approximate flow.

Two important consequences of the field equations (Euler's equations) in the classical, three-dimensional theory
of ideal fluids are: conservation of mechanical energy, and conservation of circulation (Kelvin's theorem). The
research reported herein provides a proof that mechanical energy is exactly conserved for the approximate flow
in each level in this hierarchy. Two types of circulation are considered in the approximate flow: "in-sheet"
circulation which is computed about circuits lying a fixed fractional distance between the top and bottom surfaces
of the sheet, and "cross-sheet" circulation which is computed about circuits lying in a vertical cylindrical surface.
It was found that K moments of the in-sheet circulation and K - I weighted moments of the cross-sheet
circulation are conserved in the Kth level approximate flow.

1. Introduction

The theory of fluid sheets has been developed in recent years for describing the behavior of
a thin layer of an inviscid and incompressible fluid exposed to a variety of different flow
situations. The approximate governing equations for such fluid sheets have been derived
either using the Kantorovich variational method (Levich and Krylov [4]; Shields [7]), using
Hamilton's Principle (Miles and Salmon [5]) or using a direct formulation (Green and
Naghdi [1-3]). In any case, there is no single set of governing equations. Rather, depending
on the assumed kinematical structure of the flow, a hierarchy of sets of governing equations
is produced. Miles and Salmon derive only the first level in this hierarchy (which Green and
Naghdi refer to as "restricted theory"). They exploit the assumed kinematic structure for this
level in which fluid particles originally within a vertical column move horizontally as a unit
and retain their columnar character. For higher-level theories, the corresponding kinematic
structure does not lead to columnar motion, and it is not clear that the M-S approach can
be extended to a situation where columns are not preserved.

Before we discuss conservation of either energy or circulation, it is useful to give a brief
overview of the theory. The presentation here reflects the L-K approach described by Shields
and Webster [8]. The theory is developed with the aid of an approximation to the kinematics
of the real flow field, in which the form of the fluid-velocity variation across the sheet is speci-
fied. Referring to Figure 1, we take a coordinate system with x' and x2 horizontal and x3 ver-
tically upwards. The fluid sheet is assumed to be bounded by material surfaces x3 = (x1, x 2, t)
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Fig. 1. Definition of the fluid sheet.

and x3 = (x1 , x 2, t). The local thickness, i?(x1, x2 , t), and the location of the midsurface of
the sheet, (x', x 2 , t), are given by fi - a and ( + )/2, respectively. For the Kth level of
the hierarchy, the fluid velocity v* is assumed to have the following polynomial format

K

v*(x, 2, , t) = E W,(X, X2 
t ) . s n,

n=O

where

WK(X, X2 , t) = W(X, X, t)e3 ,

(1.1)

t We use standard vector and tensor notation. Components of vectors are indicated with superscripts, whereas the
vector itself is indicated by a bold character. Derivatives are indicated by subscripts preceded by a comma. Lower
case Latin indices take on values 1, 2 & 3, lower case Greek indices take on values of 1 & 2, and repeated indices
indicate summation.
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s = 2(X3
- )/i is a nondimensional coordinate which varies from -1 on the bottom

of the sheet to + 1 on the top of the sheet, and where each w, has the dimension of vel-
ocity. In the terminology of Green and Naghdi, the w, are referred to as "directors". The
second equation in (1.1) states that the director WK is restricted to the X3 direction. A three-
dimensional pressure distribution, p*(x', x 2, x3 , t), is associated with this kinematic approxi-
mation. We define the pressures on the top and bottom of the sheet as p = p*lx3 =O(xl,x2,) and
p = p*lx3=(xl,x2.,), respectively.

The general dynamical equations for the fluid sheet, derived with reference to (1.1), consist
of three ingredients: (a) 2 kinematic boundary conditions, one each for the top and bottom
surfaces, (b) K continuity equations, expressing the incompressibility of the fluid, and
(c) 3K + 1 approximate momentum equations (K vector equations and one scalar equation).
These equations are not exact equations of motion for the flow given in (1.1). Although the
kinematic boundary conditions and the continuity conditions are exact conditions for the
flow given in (1.1), the momentum equations state only that the integral of the momentum
and of K moments in s of the momentum are preserved across the sheet. There are 2K + 1
independent moments in s of the momentum for the flow in (1.1) and these are easily written
down. To do so, however, would yield more equations than unknowns. This result is to be
expected, of course, since we should not suppose that flows of even very thin fluid sheets can
be expressed exactly by the simple polynomial form given in (1.1). As an aside, we note that
there is more than one way to achieve the same number of equations as unknowns when
using the Kantorovich procedure. For instance, it would have been possible to obtain
alternate sets of governing equations which are mathematically well-posed by using more
approximate momentum equations and fewer approximate conservation-of-mass relations.
Levich and Krylov remove this potential ambiguity by specifying that conservation of mass
be satisfied exactly.

The general dynamical equations are two-dimensional equations involving variables
which are functions of x', x2 and t only. Typically, the sought-after quantities for most
problems are displayed directly in terms of those variables which deal with the bounding
surfaces of the sheet. For instance, in water-wave problems the variable q yields the wave
profile and wave speed and the variable p gives the pressure at the bottom. In some problems
an approximation to the velocity profile within the sheet is also desired and (1.1) is used again
to provide an interpretation of the directors, w,, appearing in the mathematical model. This
step could perhaps be regarded as an additional assumption, as it is separate from those used
in the derivation of the model itself. Since the exact momentum equations are not satisfied,
this approximate flow is not necessarily a realizable ideal flow. (Under any circumstances,
the theory does not yield a pressure distribution across the sheet, but rather gives only the
integral of the pressure and K - 1 moments in s of the pressure at any given x', x 2.)

The remainder of this paper is aimed at examining the approximate flow resulting from
interpreting the variables in the governing equations using (1.1) and, in particular, com-
paring several features of this flow with known features of ideal fluid flows. In classical
mechanics of an ideal fluid two important consequences of the momentum equations (Euler's
equations) and the conservation of mass are the conservation of mechanical energy and the
conservation of circulation (Kelvin's theorem). We assume that the fluid is isothermal so that
thermodynamics is not involved here. It is of interest to ask whether these two quantities are
conserved in the approximate flow. Since only a subset of the three-dimensional momentum
equations is satisfied in the case of thin fluid sheets, conservation of energy and vorticity in
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the approximate flow is, in principle, an open question. Conservation of mechanical energy
is important if we wish to compute, say, quantities such as wave drag; conservation of
circulation is important if we wish to compute, say, water waves or geophysical flows.

It has been shown (Green and Naghdi [1]) that the average mechanical energy across the
sheet in G-N theory is always preserved, even when the kinematic approximation to the flow
is not a power series, such as given in (1.1). In the M-S approach, a Lagrangian energy
density from the kinematic approximation is used to derive equations of motion and, thus,
conservation of mechanical energy is assured.

The question of mechanical-energy conservation is not addressed in the L-K approach.
Shields [7] has shown that for ideal fluids and for the same level of the hierarchy, the
governing equations resulting from the G-N approach and those from the L-K approach
are algebraically transformable one to another, and are thus identical in substance.
Therefore, since the G-N equations do conserve mechanical energy, the L-K equations must
also. The demonstration of the transformation between the two sets of governing equations
is a tedious exercise; the direct demonstration of conservation of mechanical energy is
simpler and is given in Section 3. Since this latter derivation also gives some insight into the
physical nature of the approximation, we present it here.

For two-dimensional ideal-fluid flow, vorticity is transported with the fluid particles, as
can be easily seen by taking the curl of the momentum equations. In three-dimensional flow
the same operation leads to the so-called "vortex-stretching" terms. The vorticity measured
at a particle does not, in general, remain constant unless the vorticity is zero everywhere at
one instant in time, and thus remains zero everywhere for all time. Miles and Salmon [5]
consider the Ertel potential vorticity for the first-level theory, the only level they treat. They
derive a conservation law for the sum of the vertical and a nonvertical component of potential
vorticity (/h and */h in their notation, respectively). /h corresponds to the vertical vorticity
that one computes in ordinary shallow-water theory (where the flow is nearly horizontal).
The decomposition into these two components, however, may not be useful for flows with
a considerable vertical orientation, such as a waterfall. In the approach presented below, we
use the sheet itself to provide an orientation for the treatment of circulation, and this results
in a considerable simplification.

In all but the first-level theory, all components of the fluid-velocity vector vary across the
sheet. The approximate flow is thus a complex three-dimensional flow, and it is more in
keeping with the results of the classical theory of ideal fluids to examine conservation of
circulation rather than conservation of vorticity. In Section 4 below we investigate the
conservation of circulation for contours which lie within the sheet initially at a fixed
fractional distance between the upper and lower surfaces, and that of contours which lie in
a vertical cylinder passing through the sheet. We will refer to the former as "in-sheet"
circulation and the latter by "cross-sheet" circulation.

2. The governing equations

The governing equations for the Kth level in the thin-sheet hierarchy are presented in Shields
and Webster [8]. If the Kth vector in (1.1) is restricted (w - 0), then the equations of
motion are:
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Kinematic boundary conditions:

K K-I K-I

2 Z Wn = I,, + Z, Y Wn + 2y E Wn
n=1,3 n=0,2 n=1,3

and

K K-I K-I

2 w = 2, + , Wn 2C,' E W n;
n=0,2 n=1,3 n=0,2

Continuity:

1
wn +r/, wI - w (Inwl),, n = 1 , 2, .. ., K;

Momentum:

(i/2) I sgV* ds = =O, {Om+n[Wm,t + WWm,y]

K-I

+ E Om+n+r [(?1Wr)wm, + mi,+nQW(rwr).wm],

= -(l/e ) {[pn, + npn(r, /1) + 2np._,(;,/rl) -/ fl,

+ (- 1)"cpa]el + [ - (- 1)np - 2npn_,1 / + Onegq]e 3 },

n = 0, 1, . . ., K - 1,

and for n = k

(ir/2) f-1 sv ' ds = {11Om+K[Wmi + Wm, I

K-I

+ I om+K+r [(O1Wr)Wm, + mm+K(1wyr),wn]
r=1

= -(/Q)[/ - (- 1)Kp - 2KPK- / + OK~gtl]e,

5

(2.1)

(2.2)

(2.3)

(2.3a)

t The notation XK=,1,3 indicates a summation over odd values of n < K, beginning with n = 1, and -K=0,2 indicates
a summation over even values of n < K, beginning with n = 0.
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where

1/(s + 1), seven / , r odd,

s = , s odd r/{(r + 1)(s +1)}, reven,

p,= (/2) fI s"p* ds,

and where a = a, + v*ia, is the material derivative of an arbitrary vector a.

3. Conservation of mechanical energy

Consider a region M formed by the intersection of the fluid sheet with a vertical cylinder
generated by lines parallel to the x3 axis passing through the curve 02(x', x2 , t) lying in the
(x', x2) plane (see Fig. 1). a, the boundary of R, is composed of three surfaces: P, and 4,,
the bottom and top surfaces of the fluid sheet, and 9,, the vertical surface formed by their
intersection with the cylinder. The total energy of the flow contained within M is the sum of
the kinetic and potential energies, and is given by

o*(t) = ifff [lv*l2 + gx3 ]Q d.. (3.1)

From approximate flow given in (1.1), the square of the magnitude of the three-dimensional
velocity given in (3.1) is

K K

IV* 2 = E E (Wn' W)Sn+m
n=O m=O0

and from the definition of s, we can write x3 = + sl/2, and the differential volume
dM = (/2) ds dx' dx2. Inserting these expressions into (3.1) and exploiting symmetry, we
get

g*(t) = fldx' dx2 V'_ ds (2 - )(Wn m)S"+ + g[ + s/2].
n=0 m=n 2

(3.2)

The integration over s can be performed explicitly yielding

*(t) = f dx' dx2Qnr -, (3.3)

where

K K

= E (2 - nm)Om+n(Wn win) + g.
n=O m=n
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Consider now the time of change of the total energy enclosed with M. From Leibnitz'
theorem, the derivative of (3.3) with respect to time is

*(t), = jf dx' dx2e(/-.),t + fa daQ1-VY, (3.4)

where da is the differential arc length and Vn is the outward normal velocity of a point on
aA which is the same as the outward normal velocity on the curve a.

In order to proceed, we need to find an expression for (?-),, and to do this we must appeal
to the mathematical model for the flow (2.1-2.3). As a preliminary, we need two results easily
derived from the kinematic boundary conditions and continuity (2.1-2.2). First, Shields [7]
showed that these two sets of equations can be combined to yield a compact expression for
rt,. A similar expression for , can also be found. We record these expressions here:

K

?1 = - E [1/(n + 1)](qiWn),,
n=0,2

(3.5)
K 1

,, = w3 - ,w - Zn=1Y3 2(n + 1)

Second, for any function X(x', x 2, t) we have

(3,, + wo-,) = J,, + i/(waOf)y - nWy. (3.6)

Inserting the first equation of (3.5) into (3.6), we obtain

K-I

1(Dt4 + Word) = ?7, + t(w~o), + X, + ?(W0°)+ X E +n(? Wn)W,
n=2,4

or

K-1

II(Xt + w ,) = (1'), + (wn)) + ° E On(rlWn),y (3.7)
n=2,4

To obtain a general expression for (rJ),, we begin by taking the dot product of the nth
momentum equations (2.3) and (2.3a) with w, and summing. Since in (1.1) the components
WY: are identically zero, this summation can be written compactly as

nE0 { =0lOm+n[(Wn Wm),t + W(Wn Wm)y ]n=O m=O

K-I1

+ Om+n+r [(qWr)Wn Wm,y + m m+n(1lWr),YWn Wmi]

K

= - (1/0) Z {[PY + npn(tq/,1) + 2npn_(~,/rl) -- 5, + (- 1)" ]wn
n=o

+ [p - (- 1)np - 2np_/rl + O nQg 1]Wn} (3.8)
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It is convenient to consider the right- and left-hand sides of (3.8) separately. Consider first
the left-hand side. Using (3.7), exploiting symmetry to make the summation over m range
from n to K, and expanding the summation over r into odd and even components, we obtain

E E (2 - 6nm)0m+n[(1'(Wn Wm),, + (1WOWn Wm),j
n=O m=n

K-I

+ Z 2(2 - 6m)[Om+nOr('1W),y(Wn Wm) + Om+n+r(?1W)(Wm Wm),
r=2,4

+ Om_n+r(m + n),r+n(?Wr),,(wn w )]

K-I

+ Z Om+n+r [(W)(W,' Wm)y + (?Iw),y(Wn ' Wm)] (3.9)
r=1,3

where 6nm is the Kronecker delta, and in the last summation use has been made of the identity
(m + n)rr+ = 1 when r is odd. When r is even, the first and third terms in the second
summation can be combined using the identity

Oe+nOr = Oe+n+r - (m + n)Om+n+rm+n.

With this identity, the summand in the second summation of (3.9) is seen to be a divergence.
Finally, recombining the odd and even summations with the last term of the first line of (3.9),
the left-hand side can be written compactly as

K K K-I

(2 - 6nm) Om+n(),t + E +n+r(?Wr. W (3.10)
n=O m=n r=0

We turn our attention now to the right-hand side of (3.8). Collecting terms we obtain

K K K

+(l/Q) (,,wl - w) -- (l/) (-1)n(o,wl} - Wn) - g Y l/(n + l)w 3
n=O n=O n=0,2

K

-(l/Q) A {p,,,Wn_ + (n l- )pn_,W1;_(r, 7 /) + 2nwp_(/p,/rl) - 2nwpn_1 /l}.
n=l

(3.11)

As a result of the kinematic boundary conditions (2.1) and the definitions of a and , the
first two summations in (3.11) can be written

K K

E (/,iwnr - w3) = -P,,, and E (-l)"(a wn - w3) = -a,. (3.12)
n=O n=O

The third summation in (3.11) is more complicated and requires both the kinematic
boundary condition and the continuity conditions. Multiplying the nth continuity equation
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by [n/(n + 1)] and summing over even values of n from 2 to K, we obtain

K 1

= n-2,4 2(n + 1) (wn- 1). (3.13)

Replacing n with n + 1 in the first and third summation of (3.13) makes these summations
of w} over odd values of n from 1 to K - 1. Dividing the second kinematic boundary
condition in (2.1) by 2, subtracting (3.13) from it, and multiplying the result by ?1 yields

k K 1 K K-I 1
r ',i: T w, = r(, + ,w) + ,y + 2 Wyn=0,2 n + 1 n + 24 (n + 1) n-1, 2(n + 2)

(3.14)

The first two terms on the right-hand side of (3.14) can be replaced using (3.7). Combining
the resulting terms, we obtain

K 1 K K-I 1
?/ 1 w = (), + (r/Wn) + E (2w)

n=0,2 (n + 1) n=0,2 + n=,3 2(n + 2
(3.15)

Finally, we consider the last term in (3.11). Solving the continuity equation (3) for w, and
eliminating this variable from the last term in (3.11), we obtain

K K

-(l/e) E {Pn-I,yWYn- + Pn-1(1Wnl),ylt - Pn- 1WYn-Y,,1)} = - (1/) X (en-lwn-j),y
n=l n=1

(3.16)

Assembling the results given in Equations (3.10-12), (3.15) and (3.16), we get

K K

Z Z 2(2 - ,nm)Om+n,(wln Wm),' + g(Ct/),,
n=0 m=n

K K K--

= - E (2 - nm)Om+n+r(?1
W r

Wn Wm),Y
n=0 m=n r=0

K K 1
- (1/e) Z (P.- wn-), 7 - (rlWn)

n=l n=0,2 n +

K-I 1

-g 2(n + 2) (w + (, -n ,)/Q. (3.17)
n= 1,3 2(n + 2)
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The left-hand side of (3.17) is precisely (r/J), and we can replace it by the right-hand side,
which involves no time derivatives. Since each summation on the right-hand side of (3.17)
is a divergence, we can use the divergence theorem to express (3.4) as

=*) = - { JiJPn d5' + ffi JV di,}

K K K
+ d q E E l (2 - nm)O.+n(Wn W.) + +)

n=O m=n

+ id datr=0 r=0,2 n + 1 2(n + 1)

K K K-1

+ Or1 E E 1(2 - mn) Om+n+ Wn Wm(3.18)
n=O m=n r=O

where vn is the "normal" velocity component of the wr vector defined by w, r n, and n is the
outward normal vector to ad.

Equation (3.18) is easily interpreted. It states that the time rate of change of the total
energy in the region ! (the left-hand side) is equal to: the work done by the external pressures
on the surfaces ,,and Y (the first term on the right-hand side), the total energy captured
(or lost) as a result of the motion of the non-material surface 9fi (the second term), the work
done by internal pressures on Y§2 (the third term), the convection of potential energy into M
through S.9 (the fourth term), and, finally, the convection of kinetic energy through 9S (the
fifth term).

As a consequence, we see that the approximate equations for the fluid sheet (2.1-2.3)
preserve energy in the approximate flow in the usual sense. In particular, if the surfaces .'
and 9, are either fixed surfaces or are free surfaces with zero pressure acting on them, then
the only change in energy in the region S occurs through "leakage" through . If, in
addition S§ is a surface of no fluid motion then - remains constant throughout the flow
region.

4. Conservation of circulation

4.1. In-sheet circulation

Consider a closed contour, 0d, lying in the (x', x2 ) plane as shown in Figure 2. We define
a coordinate, 2, along this contour with 2 = 0 and A = /corresponding to the same point.
With OQ as a generating curve we can define a separate contour, Cs, in the fluid sheet for
a given value of the nondimensional vertical coordinate, s. Cs can be expressed parametric-
ally by x 1'(, t), x 2(;, t), and x 3(i, s, t) (, t) + srl(A, t)/2, with xi(O, t) = x'(, t). The
circulation F(s, t) about this contour is defined as

F(s, t) = of'v*'tda = oV* x, d (4.1)
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A

Fig. 2. Definition of the contour C,(t) used in the computation of in-sheet circulation.

where v*(, s, t) is the fluid velocity, tA, s, t) is the tangent vector, and t d = x, d is the
differential arc length, all evaluated on C, We compute now , following the particles on the
contour C,. That is, the coordinate is used only to mark these particles at a given instant
of time and is therefore not a function of time itself. The derivative of (4.1) with respect to
time yields

Ir = ),f v* - X + * V*I CI (4.2)

where use has been made of the relation x, = v* when following particles. Since v* v 
i A*>, and v*(O, s, t) = v*(, s, t), (4.2) becomes simply

1, = f,'-v* - x, dA (4.3)

i .. ·
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Each value of the parameter s, - 1 < s < 1, corresponds to a single curve on the strip.
We now compute Irn, the nth moment in s of Ft, defined by

" 2 J s ds fv* x, d, n = O, 1, ... , K- 1. (4.4)

x'(l, t), x2 (A, t), (2, t) and (, t) are all independent of s. Interchanging orders of
integration in (4.4) and using the relation x 3 (A, s, t) _ (, t) + s(A, t)/2 yields

r = lfd{xYJ. Isv ds + CI Sn iv*
3 ds + , .sn+lv*3 ds} (4.5)

The three integrals in (4.5) are exactly 2/1 times the quantities presented as the left-hand
sides of equations (2.3). Replacing these integrals with the corresponding right-hand sides
yields the following representation for the bracketed terms in (4.5):

- [2I(e)]{[Pn,, + np.(,1/t) + 2np, 1_,(C,/rl ) - Pfi, + (- )npa, ]XA

+ [ - (-1)np - 2npn_l/l + Onegn],A

+ [ - (-l1)"'p - 2(n + )pnl/ + On+l 1 g]n,/2} (4.6)

Consider now the terms in (4.6). Those involving i and p are identically zero since

f = ,y X = ,A + ?1,1/2, and a = -XYA = ,, - A/2 -

The terms involving p,_, cancel out. Collecting the terms involving Pn yields

p,,xA/(ei7) + npn,xl~/(Qt12) - (n + )p, lxUA/(?12) = (P,(O)).

Inserting these results into (4.6) yields

, = dI {-O g,A - On+lgl,A/2 - (p, /(Q))a}

(4.7)
= 0, n=0, 1, (4...,K-7) 1,

since all of the quantities are perfect differentials and the path is closed.
Equation (4.7) demonstrates that in the Kth level, K moments in s of the in-sheet

circulation are exactly preserved. Much of the previous work in the theory of fluid sheets has
involved only the first-level theory (referred to as "restricted theory" in the works of Green
and Naghdi). In this theory the first moment (the average) circulation remains unchanged.
As K becomes large, more moments of the circulation are preserved. Since all of the contours
lie in the sheet, the vorticity measured by the above circulation computation is that which
is approximately normal to the sheet. This approach yields a conservation statement which
is somewhat different from that presented by Miles and Salmon [5].
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X3

0S5(t)-1

s .=1

. s=-1

X2

X l

Fig. 3. Definition of the differential contour used in the computation of cross-sheet circulation.

4.2. Cross-sheet circulation

Consider now a curve CO lying in the (x', x2) plane and that portion of the surface of a right
cylinder generated by this curve which lies within the fluid sheet shown in Figure 3. A
coordinate i along Co assumes values from 0 to/. The time rate of change of the circulation,
f,, observed by particles originally on a contour C/ spanning the fluid sheet can be expressed
by the integral

r, = 2 f y,(s) ds,1 

where (4.8)

y,(s) = - jl dA {9v*(A, s, t) x.(t, s, t)},, + {(Q/2)}v* 3}l=o,

as can be verified by exchanging orders of integration, noting x', dA = (/2)e 3 ds on the
vertical sides of the contour, and comparing with (4.3). The kernal y, (s) ds can be identified

I '~~~~~~~~~~~~~~I

A

.... "" ~ · ··..... .. . . .. . .

.

··'~~~~~~~~~~~~~~~~1
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as the circulation on a differentially narrow contour cs(t) of width ?1 ds/2, centered about a
curve in the cylindrical surface given by s = const., - 1 < s < 1. We generalize (4.8) by
introducing a weighting factor (1 - sk)s n . We shall illustrate the calculation with k = 2,
although any even integer such that k + n < K would suffice. The result is denoted by
1, and is given by

P = l I I (1 - S2)s"ly(s) ds

= 2 as d2 I (1 - s2)Sn {v* -x,, ds

+ {(i/4) j, (1- s2)snv*3 ds} n = 0, 1, . .. K - 2. (4.9)

Integrating the first term on the right-hand side by parts, we obtain

r7= 1 d I {(1 - s2 )sn v* x A}l=-,

1 fOd [lns + (n - 2)sn+']{v* x,} ds

+ {(i/4) ,(1 -s 2)snv*' ds}l, (4.10)

The first term in (4.10) is identically zero zince (1 - s2) 0 at the indicated limits. The
second term in (4.10) is composed of two terms which are identical in form to (4.4) and can
be expressed by means of (4.7). The last term in (4.10) can be evaluated directly from (2.3).
Assembling these results we obtain

Pj = [n{-On-,gC - Ongql/2 - p,_l(1)}

- (n + 2){-On+,g - On+ 2gri/2 - p,,n+/(e)}

- 1/(2 e){[5 - (-1)np - 2npn-_/t + Onego]

- [ -_ (-_ 1)+2p - 2(n + 2 )pn+l/ + On+2 g1]}]lA=o

0, n = 0, ,..., K- 2, (4.11)

since the terms involving Pn-, p,+, fP , 8, and 0n+2 cancel, and

nOl = (n + 2),+ = {1, if n is odd,
0, if n is even,

for level 2 equations or higher.
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Equation (4.11) shows that K - 1 weighted moments of the time rate of change of
cross-sheet circulation for differential contours on a vertical strip are zero (for level 2
equations and higher). Cross-sheet circulation appears not to be preserved in general for
level 1 (restricted theory). This result shows that the cross-sheet circulation is preserved best
in the center region of the sheet. Higher levels of the theory are required to preserve
circulation close to the top and bottom surfaces.

5. Discussion

The results presented in Sections 3 and 4 demonstrate three features of the Kth level theory
of thin fluid sheets: that mechanical energy is strictly conserved, that K moments in s of the
in-sheet circulation are conserved, and that K - 1 weighted moments in s of the cross-sheet
circulation are conserved. Of the three results, the cross-sheet circulation appears least well
conserved. This is not surprising since the approximation to the flow is made in this
direction. At any rate, these three results demonstrate that as K becomes large, we can expect
the predicted flow to behave more and more like an ideal fluid. The selection of the level in
the hierarchy required for a given problem will depend, of course, on the problem itself and
the accuracy required.
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